arXiv Analytics

Sign in

arXiv:0812.5022 [math.FA]AbstractReferencesReviewsResources

The stability of a quadratic type functional equation with the fixed point alternative

M. Eshaghi Gordji, H. Khodaei

Published 2008-12-30Version 1

In this paper, we achieve the general solution and the generalized Hyers-Ulam-Rassias stability for the quadratic type functional equation &f(x+y+2cz)+f(x+y-2cz)+c^2f(2x)+c^2f(2y) &=2[f(x+y)+c^2f(x+z)+c^2f(x-z)+c^2f(y+z)+c^2f(y-z)] {2.6 cm} for fixed integers $c$ with $c\neq0,\pm1$, by using the fixed point alternative.

Related articles: Most relevant | Search more
arXiv:0812.2931 [math.FA] (Published 2008-12-15)
Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces
arXiv:math/0501158 [math.FA] (Published 2005-01-11, updated 2005-09-02)
On the Stability of J*-Homomorphisms
arXiv:math/0511539 [math.FA] (Published 2005-11-22, updated 2006-11-22)
Approximate $C^*$-Ternary Ring Homomorphisms