{ "id": "0812.5022", "version": "v1", "published": "2008-12-30T07:08:21.000Z", "updated": "2008-12-30T07:08:21.000Z", "title": "The stability of a quadratic type functional equation with the fixed point alternative", "authors": [ "M. Eshaghi Gordji", "H. Khodaei" ], "categories": [ "math.FA" ], "abstract": "In this paper, we achieve the general solution and the generalized Hyers-Ulam-Rassias stability for the quadratic type functional equation &f(x+y+2cz)+f(x+y-2cz)+c^2f(2x)+c^2f(2y) &=2[f(x+y)+c^2f(x+z)+c^2f(x-z)+c^2f(y+z)+c^2f(y-z)] {2.6 cm} for fixed integers $c$ with $c\\neq0,\\pm1$, by using the fixed point alternative.", "revisions": [ { "version": "v1", "updated": "2008-12-30T07:08:21.000Z" } ], "analyses": { "subjects": [ "39B82", "39B52" ], "keywords": [ "quadratic type functional equation", "fixed point alternative", "general solution", "generalized hyers-ulam-rassias stability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.5022E" } } }