arXiv Analytics

Sign in

arXiv:0812.0650 [math.RT]AbstractReferencesReviewsResources

Cluster-tilted algebras of type $D_n$

Wenxu Ge, Hongbo Lv, Shunhua Zhang

Published 2008-12-03, updated 2010-01-08Version 3

Let $H$ be a hereditary algebra of Dynkin type $D_n$ over a field $k$ and $\mathscr{C}_H$ be the cluster category of $H$. Assume that $n\geq 5$ and that $T$ and $T'$ are tilting objects in $\mathscr{C}_H$. We prove that the cluster-tilted algebra $\Gamma=\mathrm{End}_{\mathscr{C}_H}(T)^{\rm op}$ is isomorphic to $\Gamma'=\mathrm{End}_{\mathscr{C}_H}(T')^{\rm op}$ if and only if $T=\tau^iT'$ or $T=\sigma\tau^jT'$ for some integers $i$ and $j$, where $\tau$ is the Auslander-Reiten translation and $\sigma$ is the automorphism of $\mathscr{C}_H$ defined in section 4.

Comments: 21 pages, 13 figures, accepted for publication in Comm.Algebra
Journal: Comm.Algebra, 38(7)(2010), 2418-2432
Categories: math.RT, math.RA
Subjects: 16G20, 16G70, 05E15
Related articles: Most relevant | Search more
arXiv:math/0510445 [math.RT] (Published 2005-10-20)
From tilted to cluster-tilted algebras of Dynkin type
arXiv:math/0511382 [math.RT] (Published 2005-11-15, updated 2006-06-19)
Equivalences between cluster categories
arXiv:0709.0850 [math.RT] (Published 2007-09-05)
On the Galois coverings of a cluster-tilted algebra