{ "id": "0812.0650", "version": "v3", "published": "2008-12-03T04:42:10.000Z", "updated": "2010-01-08T03:21:16.000Z", "title": "Cluster-tilted algebras of type $D_n$", "authors": [ "Wenxu Ge", "Hongbo Lv", "Shunhua Zhang" ], "comment": "21 pages, 13 figures, accepted for publication in Comm.Algebra", "journal": "Comm.Algebra, 38(7)(2010), 2418-2432", "categories": [ "math.RT", "math.RA" ], "abstract": "Let $H$ be a hereditary algebra of Dynkin type $D_n$ over a field $k$ and $\\mathscr{C}_H$ be the cluster category of $H$. Assume that $n\\geq 5$ and that $T$ and $T'$ are tilting objects in $\\mathscr{C}_H$. We prove that the cluster-tilted algebra $\\Gamma=\\mathrm{End}_{\\mathscr{C}_H}(T)^{\\rm op}$ is isomorphic to $\\Gamma'=\\mathrm{End}_{\\mathscr{C}_H}(T')^{\\rm op}$ if and only if $T=\\tau^iT'$ or $T=\\sigma\\tau^jT'$ for some integers $i$ and $j$, where $\\tau$ is the Auslander-Reiten translation and $\\sigma$ is the automorphism of $\\mathscr{C}_H$ defined in section 4.", "revisions": [ { "version": "v3", "updated": "2010-01-08T03:21:16.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "05E15" ], "keywords": [ "cluster-tilted algebra", "hereditary algebra", "dynkin type", "cluster category", "auslander-reiten translation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.0650G" } } }