arXiv:0811.1410 [math.RT]AbstractReferencesReviewsResources
Conjectures about distinction and Asai $L$-functions of generic representations of general linear groups over local fields
Published 2008-11-10, updated 2009-01-02Version 3
Let $K/F$ be a quadratic extension of p-adic fields. The Bernstein-Zelevinsky's classification asserts that generic representations are parabolically induced from quasi-square-integrable representations. We show, following a method developed by Cogdell and Piatetski-Shapiro, that the equality of the Rankin-Selberg type Asai $L$-function of generic representations of $GL(n,K)$ and of the Asai $L$-function of the Langlands parameter, is equivalent to the truth of a conjecture about classification of distinguished generic representations in terms of the inducing quasi-square-integrable representations. As the conjecture is true for principal series representations, this gives the expression of the Asai L-function of such representations.