arXiv:0811.0791 [math-ph]AbstractReferencesReviewsResources
The Hilbert Transform of a Measure
Alexei Poltoratski, Barry Simon, Maxim Zinchenko
Published 2008-11-05, updated 2009-06-05Version 2
Let $\fre$ be a homogeneous subset of $\bbR$ in the sense of Carleson. Let $\mu$ be a finite positive measure on $\bbR$ and $H_\mu(x)$ its Hilbert transform. We prove that if $\lim_{t\to\infty} t \abs{\fre\cap\{x\mid\abs{H_\mu(x)}>t\}}=0$, then $\mu_s(\fre)=0$, where $\mu_\s$ is the singular part of $\mu$.
Comments: 18 pages
Related articles: Most relevant | Search more
arXiv:0804.2721 [math-ph] (Published 2008-04-17)
Hilbert Transform: A New Integral Formula
arXiv:2404.02664 [math-ph] (Published 2024-04-03)
Computing some Principal Value integrals without Residues and Applications on Hilbert Transform and Fourier Transform
arXiv:1303.6206 [math-ph] (Published 2013-03-25)
Some integrals related to the Fermi function