{ "id": "0811.0791", "version": "v2", "published": "2008-11-05T18:38:39.000Z", "updated": "2009-06-05T00:21:55.000Z", "title": "The Hilbert Transform of a Measure", "authors": [ "Alexei Poltoratski", "Barry Simon", "Maxim Zinchenko" ], "comment": "18 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "Let $\\fre$ be a homogeneous subset of $\\bbR$ in the sense of Carleson. Let $\\mu$ be a finite positive measure on $\\bbR$ and $H_\\mu(x)$ its Hilbert transform. We prove that if $\\lim_{t\\to\\infty} t \\abs{\\fre\\cap\\{x\\mid\\abs{H_\\mu(x)}>t\\}}=0$, then $\\mu_s(\\fre)=0$, where $\\mu_\\s$ is the singular part of $\\mu$.", "revisions": [ { "version": "v2", "updated": "2009-06-05T00:21:55.000Z" } ], "analyses": { "subjects": [ "42A50", "26A30", "42B25" ], "keywords": [ "hilbert transform", "finite positive measure", "singular part" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.0791P" } } }