arXiv:0809.4010 [math.RT]AbstractReferencesReviewsResources
Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves
Anthony Licata, Alistair Savage
Published 2008-09-23, updated 2009-11-19Version 3
We define complexes of vector bundles on products of moduli spaces of framed rank r torsion-free sheaves on the complex projective plane. The top non-vanishing Chern classes of the cohomology of these complexes yield actions of the r-colored Heisenberg and Clifford algebras on the equivariant cohomology of the moduli spaces. In this way we obtain a geometric realization of the boson-fermion correspondence and related vertex operators.
Comments: 36 pages; v2: Definition of geometric Heisenberg operators modified; v3: Minor typos corrected
Journal: Selecta Math. 16 (2010), no. 16, 201-240
Keywords: moduli spaces, framed torsion-free sheaves, complexes yield actions, define complexes, geometric realization
Tags: journal article
Related articles: Most relevant | Search more
Geometric realization of Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data
arXiv:1803.06353 [math.RT] (Published 2018-03-16)
Potentials for Moduli Spaces of A_m-local Systems on Surfaces
arXiv:2312.10582 [math.RT] (Published 2023-12-17)
A geometric realization of the asymptotic affine Hecke algebra