arXiv Analytics

Sign in

arXiv:0808.1629 [math.AG]AbstractReferencesReviewsResources

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn

Published 2008-08-12, updated 2010-01-23Version 2

Let $k$ be a field of characteristic $p>0$. Let $D_m$ be a $\BT_m$ over $k$ (i.e., an $m$-truncated Barsotti--Tate group over $k$). Let $S$ be a\break $k$-scheme and let $X$ be a $\BT_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\ge 5$, we show that $S_{D_m}(X)$ is pure in $S$ i.e., the immersion $S_{D_m}(X) \hookrightarrow S$ is affine. For $p\in\{2,3\}$, we prove purity if $D_m$ satisfies a certain property depending only on its $p$-torsion $D_m[p]$. For $p\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.

Comments: Final version 38 pages. To appear in Ann. Sci. \'Ec. Norm. Sup
Categories: math.AG, math.NT
Related articles: Most relevant | Search more
arXiv:2205.10344 [math.AG] (Published 2022-05-20)
Hecke orbits on Shimura varieties of Hodge type
arXiv:1605.05540 [math.AG] (Published 2016-05-18)
On the Newton stratification in the good reduction of Shimura varieties
arXiv:1312.0490 [math.AG] (Published 2013-12-02, updated 2014-11-12)
The geometry of Newton strata in the reduction modulo $p$ of Shimura varieties of PEL type