{ "id": "0808.1629", "version": "v2", "published": "2008-08-12T09:54:13.000Z", "updated": "2010-01-23T11:41:59.000Z", "title": "Purity of level m stratifications", "authors": [ "Marc-Hubert Nicole", "Adrian Vasiu", "Torsten Wedhorn" ], "comment": "Final version 38 pages. To appear in Ann. Sci. \\'Ec. Norm. Sup", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $k$ be a field of characteristic $p>0$. Let $D_m$ be a $\\BT_m$ over $k$ (i.e., an $m$-truncated Barsotti--Tate group over $k$). Let $S$ be a\\break $k$-scheme and let $X$ be a $\\BT_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes the locus where $X$ is locally for the fppf topology isomorphic to $D_m$. If $p\\ge 5$, we show that $S_{D_m}(X)$ is pure in $S$ i.e., the immersion $S_{D_m}(X) \\hookrightarrow S$ is affine. For $p\\in\\{2,3\\}$, we prove purity if $D_m$ satisfies a certain property depending only on its $p$-torsion $D_m[p]$. For $p\\ge 5$, we apply the developed techniques to show that all level $m$ stratifications associated to Shimura varieties of Hodge type are pure.", "revisions": [ { "version": "v2", "updated": "2010-01-23T11:41:59.000Z" } ], "analyses": { "subjects": [ "11E57", "11G10", "11G18", "11G25", "14F30", "14G35", "14L05", "14L15", "14L30", "14R20", "20G25" ], "keywords": [ "stratifications", "fppf topology isomorphic", "truncated barsotti-tate group", "shimura varieties", "hodge type" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }