arXiv Analytics

Sign in

arXiv:0808.0306 [math.DG]AbstractReferencesReviewsResources

Exceptional (Z/2Z) x (Z/2Z)-symmetric spaces

Andreas Kollross

Published 2008-08-03Version 1

The notion of (Z/2Z) x (Z/2Z)-symmetric spaces is a generalization of classical symmetric spaces, where the group Z/2Z is replaced by (Z/2Z) x (Z/2Z). In this article, a classification is given of the (Z/2Z) x (Z/2Z)-symmetric spaces G/K where G is an exceptional compact Lie group or Spin(8), complementing recent results of Bahturin and Goze. Our results are equivalent to a classification of (Z/2Z) x (Z/2Z)-gradings on the exceptional simple Lie algebras e6, e7, e8, f4, g2 and so(8).

Comments: 13 pages
Journal: Pacific J. Math. 242 (2009), no. 1, 113--130
Categories: math.DG, math.RA
Subjects: 53C30, 53C35, 17B40
Related articles: Most relevant | Search more
arXiv:math/0612098 [math.DG] (Published 2006-12-04, updated 2008-02-09)
(Z/2Z x Z/2Z)-symmetric spaces
arXiv:1010.5488 [math.DG] (Published 2010-10-26, updated 2011-01-24)
On the classification of warped product Einstein metrics
arXiv:math/0305050 [math.DG] (Published 2003-05-02)
Classification of solvable 3-dimensional Lie triple systems