{ "id": "0808.0306", "version": "v1", "published": "2008-08-03T09:19:14.000Z", "updated": "2008-08-03T09:19:14.000Z", "title": "Exceptional (Z/2Z) x (Z/2Z)-symmetric spaces", "authors": [ "Andreas Kollross" ], "comment": "13 pages", "journal": "Pacific J. Math. 242 (2009), no. 1, 113--130", "doi": "10.2140/pjm.2009.242.113", "categories": [ "math.DG", "math.RA" ], "abstract": "The notion of (Z/2Z) x (Z/2Z)-symmetric spaces is a generalization of classical symmetric spaces, where the group Z/2Z is replaced by (Z/2Z) x (Z/2Z). In this article, a classification is given of the (Z/2Z) x (Z/2Z)-symmetric spaces G/K where G is an exceptional compact Lie group or Spin(8), complementing recent results of Bahturin and Goze. Our results are equivalent to a classification of (Z/2Z) x (Z/2Z)-gradings on the exceptional simple Lie algebras e6, e7, e8, f4, g2 and so(8).", "revisions": [ { "version": "v1", "updated": "2008-08-03T09:19:14.000Z" } ], "analyses": { "subjects": [ "53C30", "53C35", "17B40" ], "keywords": [ "exceptional simple lie algebras e6", "exceptional compact lie group", "classical symmetric spaces", "group z/2z", "classification" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.0306K" } } }