arXiv Analytics

Sign in

arXiv:0804.4618 [quant-ph]AbstractReferencesReviewsResources

Fleming's bound for the decay of mixed states

Florian Fröwis, Gebhard Grübl, Markus Penz

Published 2008-04-29Version 1

Fleming's inequality is generalized to the decay function of mixed states. We show that for any symmetric hamiltonian $h$ and for any density operator $\rho$ on a finite dimensional Hilbert space with the orthogonal projection $\Pi$ onto the range of $\rho$ there holds the estimate $\Tr(\Pi \rme^{-\rmi ht}\rho \rme^{\rmi ht}) \geq\cos^{2}((\Delta h)_{\rho}t) $ for all real $t$ with $(\Delta h)_{\rho}| t| \leq\pi/2.$ We show that equality either holds for all $t\in\mathbb{R}$ or it does not hold for a single $t$ with $0<(\Delta h)_{\rho}| t| \leq\pi/2.$ All the density operators saturating the bound for all $t\in\mathbb{R},$ i.e. the mixed intelligent states, are determined.

Comments: 12 pages
Journal: Journ Physics A 41 (2008) 405201 (11pp)
Categories: quant-ph
Related articles: Most relevant | Search more
arXiv:quant-ph/0003114 (Published 2000-03-24)
Phase shift operator and cyclic evolution in finite dimensional Hilbert space
arXiv:quant-ph/0102027 (Published 2001-02-05)
Estimating the spectrum of a density operator
arXiv:1201.0465 [quant-ph] (Published 2012-01-02, updated 2012-02-06)
Radon Transform in Finite Dimensional Hilbert Space