{ "id": "0804.4618", "version": "v1", "published": "2008-04-29T14:17:08.000Z", "updated": "2008-04-29T14:17:08.000Z", "title": "Fleming's bound for the decay of mixed states", "authors": [ "Florian Fröwis", "Gebhard Grübl", "Markus Penz" ], "comment": "12 pages", "journal": "Journ Physics A 41 (2008) 405201 (11pp)", "doi": "10.1088/1751-8113/41/40/405201", "categories": [ "quant-ph" ], "abstract": "Fleming's inequality is generalized to the decay function of mixed states. We show that for any symmetric hamiltonian $h$ and for any density operator $\\rho$ on a finite dimensional Hilbert space with the orthogonal projection $\\Pi$ onto the range of $\\rho$ there holds the estimate $\\Tr(\\Pi \\rme^{-\\rmi ht}\\rho \\rme^{\\rmi ht}) \\geq\\cos^{2}((\\Delta h)_{\\rho}t) $ for all real $t$ with $(\\Delta h)_{\\rho}| t| \\leq\\pi/2.$ We show that equality either holds for all $t\\in\\mathbb{R}$ or it does not hold for a single $t$ with $0<(\\Delta h)_{\\rho}| t| \\leq\\pi/2.$ All the density operators saturating the bound for all $t\\in\\mathbb{R},$ i.e. the mixed intelligent states, are determined.", "revisions": [ { "version": "v1", "updated": "2008-04-29T14:17:08.000Z" } ], "analyses": { "keywords": [ "mixed states", "flemings bound", "finite dimensional hilbert space", "density operator", "decay function" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2008, "month": "Oct", "volume": 41, "number": 40, "pages": 405201 }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JPhA...41N5201F" } } }