arXiv Analytics

Sign in

arXiv:0804.1730 [math.AP]AbstractReferencesReviewsResources

Micro-local analysis in Fourier Lebesgue and modulation spaces. Part I

Stevan Pilipovic, Nenad Teofanov, Joachim Toft

Published 2008-04-10, updated 2009-11-25Version 3

Let $\omega ,\omega_0$ be appropriate weight functions and $q\in [1,\infty ]$. We introduce the wave-front set, $\WF_{\mathscr FL^q_{(\omega)}}(f)$ of $f\in \mathscr S'$ with respect to weighted Fourier Lebesgue space $\mathscr FL^q_{(\omega)}$. We prove that usual mapping properties for pseudo-differential operators $\op (a)$ with symbols $a$ in $S^{(\omega _0)}_{\rho, 0}$ hold for such wave-front sets. Especially we prove \WF_{\mathscr FL^q_{(\omega /\omega_0)}}(\op (a)f)\subseteq \WF_{\mathscr FL^q_{(\omega)}}(f) \subseteq \WF_{\mathscr FL^q_{(\omega /\omega_0)}}(\op (a)f)\ttbigcup \Char (a). %% Here $\Char (a)$ is the set of characteristic points of $a$.

Related articles: Most relevant | Search more
arXiv:1405.3121 [math.AP] (Published 2014-05-13)
On the Schrödinger equation with potential in modulation spaces
arXiv:1203.4651 [math.AP] (Published 2012-03-21)
Modulation Spaces and Nonlinear Evolution Equations
arXiv:0904.1691 [math.AP] (Published 2009-04-10)
Pseudodifferential operators on $L^p$, Wiener amalgam and modulation spaces