{ "id": "0804.1730", "version": "v3", "published": "2008-04-10T15:18:04.000Z", "updated": "2009-11-25T14:32:29.000Z", "title": "Micro-local analysis in Fourier Lebesgue and modulation spaces. Part I", "authors": [ "Stevan Pilipovic", "Nenad Teofanov", "Joachim Toft" ], "categories": [ "math.AP", "math.FA" ], "abstract": "Let $\\omega ,\\omega_0$ be appropriate weight functions and $q\\in [1,\\infty ]$. We introduce the wave-front set, $\\WF_{\\mathscr FL^q_{(\\omega)}}(f)$ of $f\\in \\mathscr S'$ with respect to weighted Fourier Lebesgue space $\\mathscr FL^q_{(\\omega)}$. We prove that usual mapping properties for pseudo-differential operators $\\op (a)$ with symbols $a$ in $S^{(\\omega _0)}_{\\rho, 0}$ hold for such wave-front sets. Especially we prove \\WF_{\\mathscr FL^q_{(\\omega /\\omega_0)}}(\\op (a)f)\\subseteq \\WF_{\\mathscr FL^q_{(\\omega)}}(f) \\subseteq \\WF_{\\mathscr FL^q_{(\\omega /\\omega_0)}}(\\op (a)f)\\ttbigcup \\Char (a). %% Here $\\Char (a)$ is the set of characteristic points of $a$.", "revisions": [ { "version": "v3", "updated": "2009-11-25T14:32:29.000Z" } ], "analyses": { "subjects": [ "35A18", "35Sxx", "42B35", "47G30" ], "keywords": [ "modulation spaces", "micro-local analysis", "wave-front set", "weighted fourier lebesgue space", "appropriate weight functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1730P" } } }