arXiv Analytics

Sign in

arXiv:0803.1637 [math.CO]AbstractReferencesReviewsResources

Large induced trees in K_r-free graphs

Jacob Fox, Po-Shen Loh, Benny Sudakov

Published 2008-03-11, updated 2008-10-25Version 2

For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that is a tree. In this paper, we study the problem of bounding t(G) for graphs which do not contain a complete graph K_r on r vertices. This problem was posed twenty years ago by Erdos, Saks, and Sos. Substantially improving earlier results of various researchers, we prove that every connected triangle-free graph on n vertices contains an induced tree of order \sqrt{n}. When r >= 4, we also show that t(G) >= (\log n)/(4 \log r) for every connected K_r-free graph G of order n. Both of these bounds are tight up to small multiplicative constants, and the first one disproves a recent conjecture of Matousek and Samal.

Related articles: Most relevant | Search more
arXiv:0906.4142 [math.CO] (Published 2009-06-22, updated 2011-03-30)
The maximum number of cliques in a graph embedded in a surface
arXiv:1303.2951 [math.CO] (Published 2013-03-12)
The Erdős-Hajnal conjecture for rainbow triangles
arXiv:1311.2785 [math.CO] (Published 2013-11-12, updated 2014-05-14)
On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs