arXiv:0803.1278 [math.FA]AbstractReferencesReviewsResources
Nevanlinna-Pick interpolation for $C+BH^\infty$
Published 2008-03-09, updated 2008-09-21Version 3
Given an inner function $B$ we classify the invariant subspaces of the algebra $H^\infty_B:=\mathbb{C}+BH^\infty$. We derive a formula in terms of these invariant subspaces for the distance of an element in $L^\infty$ to a certain weak*-closed ideal in $H^\infty_B$ and use this to prove an analogue of the Nevanlinna-Pick interpolation theorem.
Comments: 19 pages, no figures
Related articles: Most relevant | Search more
arXiv:2407.17352 [math.FA] (Published 2024-07-24)
Invariant subspaces of perturbed backward shift
arXiv:2408.13753 [math.FA] (Published 2024-08-25)
Liftings and invariant subspaces of Hankel operators
arXiv:2003.09399 [math.FA] (Published 2020-03-20)
The invariant subspaces of $ S\oplus S^* $