{ "id": "0803.1278", "version": "v3", "published": "2008-03-09T04:02:20.000Z", "updated": "2008-09-21T17:00:43.000Z", "title": "Nevanlinna-Pick interpolation for $C+BH^\\infty$", "authors": [ "Mrinal Raghupathi" ], "comment": "19 pages, no figures", "categories": [ "math.FA", "math.OA" ], "abstract": "Given an inner function $B$ we classify the invariant subspaces of the algebra $H^\\infty_B:=\\mathbb{C}+BH^\\infty$. We derive a formula in terms of these invariant subspaces for the distance of an element in $L^\\infty$ to a certain weak*-closed ideal in $H^\\infty_B$ and use this to prove an analogue of the Nevanlinna-Pick interpolation theorem.", "revisions": [ { "version": "v3", "updated": "2008-09-21T17:00:43.000Z" } ], "analyses": { "subjects": [ "47A57", "46E22" ], "keywords": [ "invariant subspaces", "nevanlinna-pick interpolation theorem", "inner function" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.1278R" } } }