arXiv:0710.5907 [math.FA]AbstractReferencesReviewsResources
On an extension of the Blaschke-Santalo inequality
Published 2007-10-31Version 1
Let $K$ be a convex body and $K^\circ$ its polar body. Call $\phi(K)=\frac{1}{|K||K^\circ|}\int_K\int_{K^\circ}< x,y>^2 dxdy$. It is conjectured that $\phi(K)$ is maximum when $K$ is the euclidean ball. In particular this statement implies the Blaschke-Santalo inequality. We verify this conjecture when $K$ is restricted to be a $p$--ball.
Comments: 7 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1001.0714 [math.FA] (Published 2010-01-05)
A convex body whose centroid and Santaló point are far apart
arXiv:1208.0783 [math.FA] (Published 2012-08-03)
Some Affine Invariants Revisited
arXiv:math/0604299 [math.FA] (Published 2006-04-12)
A note on subgaussian estimates for linear functionals on convex bodies