{ "id": "0710.5907", "version": "v1", "published": "2007-10-31T16:54:35.000Z", "updated": "2007-10-31T16:54:35.000Z", "title": "On an extension of the Blaschke-Santalo inequality", "authors": [ "David Alonso-Gutierrez" ], "comment": "7 pages", "categories": [ "math.FA" ], "abstract": "Let $K$ be a convex body and $K^\\circ$ its polar body. Call $\\phi(K)=\\frac{1}{|K||K^\\circ|}\\int_K\\int_{K^\\circ}< x,y>^2 dxdy$. It is conjectured that $\\phi(K)$ is maximum when $K$ is the euclidean ball. In particular this statement implies the Blaschke-Santalo inequality. We verify this conjecture when $K$ is restricted to be a $p$--ball.", "revisions": [ { "version": "v1", "updated": "2007-10-31T16:54:35.000Z" } ], "analyses": { "subjects": [ "52A20", "52A40", "46B20" ], "keywords": [ "blaschke-santalo inequality", "statement implies", "convex body", "conjecture" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.5907A" } } }