arXiv Analytics

Sign in

arXiv:0710.1443 [math.RT]AbstractReferencesReviewsResources

Variations on themes of Kostant

Victor Ginzburg

Published 2007-10-08, updated 2008-01-09Version 2

Let g be a complex semisimple Lie algebra and let G' be the Langlands dual group. We give a description of the cohomology algebra of an arbitrary spherical Schubert variety in the loop Grassmannian for G' as a quotient of the form Sym(g^e)/J. Here, J is an appropriate ideal in the symmetric algebra of g^e, the centralizer of a principal nilpotent in g. We also discuss a `topological' proof of Kostant's famous result on the structure of the polynomial algebra on g.

Comments: Final version to appear in a special volume dedicated to Bertram Kostant. It supercedes arXiv:math.AG/9803141
Categories: math.RT, math.AG
Related articles: Most relevant | Search more
arXiv:math/0201073 [math.RT] (Published 2002-01-09, updated 2020-02-11)
Perverse sheaves on affine flags and Langlands dual group
arXiv:math/0206119 [math.RT] (Published 2002-06-11, updated 2002-06-21)
Normalized intertwining operators and nilpotent elements in the Langlands dual group
arXiv:math/0201256 [math.RT] (Published 2002-01-27, updated 2007-09-04)
Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group