{ "id": "0710.1443", "version": "v2", "published": "2007-10-08T18:55:52.000Z", "updated": "2008-01-09T00:10:22.000Z", "title": "Variations on themes of Kostant", "authors": [ "Victor Ginzburg" ], "comment": "Final version to appear in a special volume dedicated to Bertram Kostant. It supercedes arXiv:math.AG/9803141", "categories": [ "math.RT", "math.AG" ], "abstract": "Let g be a complex semisimple Lie algebra and let G' be the Langlands dual group. We give a description of the cohomology algebra of an arbitrary spherical Schubert variety in the loop Grassmannian for G' as a quotient of the form Sym(g^e)/J. Here, J is an appropriate ideal in the symmetric algebra of g^e, the centralizer of a principal nilpotent in g. We also discuss a `topological' proof of Kostant's famous result on the structure of the polynomial algebra on g.", "revisions": [ { "version": "v2", "updated": "2008-01-09T00:10:22.000Z" } ], "analyses": { "keywords": [ "variations", "complex semisimple lie algebra", "langlands dual group", "arbitrary spherical schubert variety", "symmetric algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.1443G" } } }