arXiv:0709.3903 [math.PR]AbstractReferencesReviewsResources
Noncentral convergence of multiple integrals
Ivan Nourdin, Giovanni Peccati
Published 2007-09-25, updated 2009-08-28Version 3
Fix $\nu>0$, denote by $G(\nu/2)$ a Gamma random variable with parameter $\nu/2$ and let $n\geq2$ be a fixed even integer. Consider a sequence $\{F_k\}_{k\geq1}$ of square integrable random variables belonging to the $n$th Wiener chaos of a given Gaussian process and with variance converging to $2\nu$. As $k\to\infty$, we prove that $F_k$ converges in distribution to $2G(\nu/2)-\nu$ if and only if $E(F_k^4)-12E(F_k^3)\to12\nu^2-48\nu$.
Comments: Published in at http://dx.doi.org/10.1214/08-AOP435 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2009, Vol. 37, No. 4, 1412-1426
DOI: 10.1214/08-AOP435
Categories: math.PR
Keywords: multiple integrals, noncentral convergence, th wiener chaos, square integrable random variables belonging, gamma random
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0707.1220 [math.PR] (Published 2007-07-09)
Gaussian Approximations of Multiple Integrals
arXiv:0904.2094 [math.PR] (Published 2009-04-14)
A multiple stochastic integral criterion for almost sure limit theorems
arXiv:2502.03596 [math.PR] (Published 2025-02-05)
Fourth-Moment Theorems for Sums of Multiple Integrals