{ "id": "0709.3903", "version": "v3", "published": "2007-09-25T09:57:02.000Z", "updated": "2009-08-28T05:48:11.000Z", "title": "Noncentral convergence of multiple integrals", "authors": [ "Ivan Nourdin", "Giovanni Peccati" ], "comment": "Published in at http://dx.doi.org/10.1214/08-AOP435 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2009, Vol. 37, No. 4, 1412-1426", "doi": "10.1214/08-AOP435", "categories": [ "math.PR" ], "abstract": "Fix $\\nu>0$, denote by $G(\\nu/2)$ a Gamma random variable with parameter $\\nu/2$ and let $n\\geq2$ be a fixed even integer. Consider a sequence $\\{F_k\\}_{k\\geq1}$ of square integrable random variables belonging to the $n$th Wiener chaos of a given Gaussian process and with variance converging to $2\\nu$. As $k\\to\\infty$, we prove that $F_k$ converges in distribution to $2G(\\nu/2)-\\nu$ if and only if $E(F_k^4)-12E(F_k^3)\\to12\\nu^2-48\\nu$.", "revisions": [ { "version": "v3", "updated": "2009-08-28T05:48:11.000Z" } ], "analyses": { "subjects": [ "60F05", "60G15", "60H05", "60H07" ], "keywords": [ "multiple integrals", "noncentral convergence", "th wiener chaos", "square integrable random variables belonging", "gamma random" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.3903N" } } }