arXiv Analytics

Sign in

arXiv:0707.4213 [math.AT]AbstractReferencesReviewsResources

A Batalin-Vilkovisky Algebra structure on the Hochschild Cohomology of Truncated Polynomials

Tian Yang

Published 2007-07-29, updated 2010-04-22Version 5

The main result of this paper is to calculate the Batalin-Vilkovisky structure of $HH^*(C^*(\mathbf{K}P^n;R);C^*(\mathbf{K}P^n;R))$ for $ \mathbf{K}=\mathbb{C}$ and $\mathbb{H}$, and $R=\mathbb{Z}$ and any field; and shows that in the special case when $M=\mathbb{C}P^1=S^2$, and $R=\mathbb{Z}$, this structure can not be identified with the BV-structure of $\mathbb{H}_*(LS^2;\mathbb{Z})$ computed by Luc Memichi in \cite{menichi2}. However, the induced Gerstenhaber structures are still identified in this case. Moreover, according to a recent work of Y.Felix and J.Thomas \cite{felix--thomas}, the main result of the present paper eventually calculates the BV-structure of the rational loop homology, $\mathbb{H}_*(L\mathbb{C}P^n;\mathbb{Q})$ and $\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Q})$, of projective spaces.

Related articles: Most relevant | Search more
arXiv:2404.01323 [math.AT] (Published 2024-03-28)
Batalin-Vilkovisky algebra structure on the Hochschild cohomology of $E_\infty$-algebras
arXiv:0707.4118 [math.AT] (Published 2007-07-27)
The Hochschild cohomology of a Poincaré algebra
arXiv:0909.3222 [math.AT] (Published 2009-09-17, updated 2010-10-08)
Uniqueness of $A_\infty$-structures and Hochschild cohomology