{ "id": "0707.4213", "version": "v5", "published": "2007-07-29T06:01:53.000Z", "updated": "2010-04-22T05:04:33.000Z", "title": "A Batalin-Vilkovisky Algebra structure on the Hochschild Cohomology of Truncated Polynomials", "authors": [ "Tian Yang" ], "categories": [ "math.AT", "math.GT" ], "abstract": "The main result of this paper is to calculate the Batalin-Vilkovisky structure of $HH^*(C^*(\\mathbf{K}P^n;R);C^*(\\mathbf{K}P^n;R))$ for $ \\mathbf{K}=\\mathbb{C}$ and $\\mathbb{H}$, and $R=\\mathbb{Z}$ and any field; and shows that in the special case when $M=\\mathbb{C}P^1=S^2$, and $R=\\mathbb{Z}$, this structure can not be identified with the BV-structure of $\\mathbb{H}_*(LS^2;\\mathbb{Z})$ computed by Luc Memichi in \\cite{menichi2}. However, the induced Gerstenhaber structures are still identified in this case. Moreover, according to a recent work of Y.Felix and J.Thomas \\cite{felix--thomas}, the main result of the present paper eventually calculates the BV-structure of the rational loop homology, $\\mathbb{H}_*(L\\mathbb{C}P^n;\\mathbb{Q})$ and $\\mathbb{H}_*(L\\mathbb{H}P^n;\\mathbb{Q})$, of projective spaces.", "revisions": [ { "version": "v5", "updated": "2010-04-22T05:04:33.000Z" } ], "analyses": { "keywords": [ "batalin-vilkovisky algebra structure", "hochschild cohomology", "truncated polynomials", "main result", "rational loop homology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.4213Y" } } }