arXiv Analytics

Sign in

arXiv:0706.2711 [math.CO]AbstractReferencesReviewsResources

On the Descent Algebra of Type $D$

N. Bergeron, S. J. van Willigenburg

Published 2007-06-19Version 1

Here we give a combinatorial interpretation of Solomon's rule for multiplication in the descent algebra of Weyl groups of type $D$, $\Sigma D_n$. From here we show that $\Sigma D_n$ is a homomorphic image of the descent algebra of the hyperoctahedral group, $\Sigma B_{n-2}$.

Comments: 7 pages
Journal: J. of Algebra 206:699-705 (1998)
Categories: math.CO
Subjects: 20F32
Related articles: Most relevant | Search more
arXiv:1105.1718 [math.CO] (Published 2011-05-09, updated 2013-06-16)
A Combinatorial interpretation of Hofstadter's G-sequence
arXiv:math/0507169 [math.CO] (Published 2005-07-08, updated 2005-07-20)
A combinatorial interpretation of the eigensequence for composition
arXiv:1903.06589 [math.CO] (Published 2019-03-15)
New combinatorial interpretation of the binomial coefficients