{ "id": "0706.2711", "version": "v1", "published": "2007-06-19T04:55:40.000Z", "updated": "2007-06-19T04:55:40.000Z", "title": "On the Descent Algebra of Type $D$", "authors": [ "N. Bergeron", "S. J. van Willigenburg" ], "comment": "7 pages", "journal": "J. of Algebra 206:699-705 (1998)", "categories": [ "math.CO" ], "abstract": "Here we give a combinatorial interpretation of Solomon's rule for multiplication in the descent algebra of Weyl groups of type $D$, $\\Sigma D_n$. From here we show that $\\Sigma D_n$ is a homomorphic image of the descent algebra of the hyperoctahedral group, $\\Sigma B_{n-2}$.", "revisions": [ { "version": "v1", "updated": "2007-06-19T04:55:40.000Z" } ], "analyses": { "subjects": [ "20F32" ], "keywords": [ "descent algebra", "hyperoctahedral group", "combinatorial interpretation", "homomorphic image" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.2711B" } } }