arXiv Analytics

Sign in

arXiv:0705.0970 [math.FA]AbstractReferencesReviewsResources

On a Class of Ideals of the Toeplitz Algebra on the Bergman Space of the Unit Ball

Trieu Le

Published 2007-05-07Version 1

Let $\mathfrak{T}$ denote the full Toeplitz algebra on the Bergman space of the unit ball $\mathbb{B}_n.$ For each subset $G$ of $L^{\infty},$ let $\mathfrak{CI}(G)$ denote the closed two-sided ideal of $\mathfrak{T}$ generated by all $T_fT_g-T_gT_f$ with $f,g\in G.$ It is known that $\mathfrak{CI}(C(\bar{\mathbb{B}}_n))=\mathcal{K}$ - the ideal of compact operators and $\mathfrak{CI}(C(\mathbb{B}_n))=\mathfrak{T}.$ Despite these ``extremal cases'', $\mathfrak{T}$ does contain other non-trivial ideals. This paper gives a construction of a class of subsets $G$ of $L^{\infty}$ so that $\mathcal{K}\subsetneq\mathfrak{CI}(G)\subsetneq\mathfrak{T}.$

Comments: 8 pages
Categories: math.FA
Subjects: 47B35
Related articles: Most relevant | Search more
arXiv:2501.08385 [math.FA] (Published 2025-01-14)
On the density of Toeplitz operators in the Toeplitz algebra over the Bergman space of the unit ball
arXiv:2407.02087 [math.FA] (Published 2024-07-02)
A geometric condition for the invertibility of Toeplitz operators on the Bergman space
arXiv:1710.11434 [math.FA] (Published 2017-10-31)
Spaces of $uτ$-Dunford-Pettis and $uτ$-Compact Operators on Locally Solid Vector Lattices