{ "id": "0705.0970", "version": "v1", "published": "2007-05-07T19:38:13.000Z", "updated": "2007-05-07T19:38:13.000Z", "title": "On a Class of Ideals of the Toeplitz Algebra on the Bergman Space of the Unit Ball", "authors": [ "Trieu Le" ], "comment": "8 pages", "categories": [ "math.FA" ], "abstract": "Let $\\mathfrak{T}$ denote the full Toeplitz algebra on the Bergman space of the unit ball $\\mathbb{B}_n.$ For each subset $G$ of $L^{\\infty},$ let $\\mathfrak{CI}(G)$ denote the closed two-sided ideal of $\\mathfrak{T}$ generated by all $T_fT_g-T_gT_f$ with $f,g\\in G.$ It is known that $\\mathfrak{CI}(C(\\bar{\\mathbb{B}}_n))=\\mathcal{K}$ - the ideal of compact operators and $\\mathfrak{CI}(C(\\mathbb{B}_n))=\\mathfrak{T}.$ Despite these ``extremal cases'', $\\mathfrak{T}$ does contain other non-trivial ideals. This paper gives a construction of a class of subsets $G$ of $L^{\\infty}$ so that $\\mathcal{K}\\subsetneq\\mathfrak{CI}(G)\\subsetneq\\mathfrak{T}.$", "revisions": [ { "version": "v1", "updated": "2007-05-07T19:38:13.000Z" } ], "analyses": { "subjects": [ "47B35" ], "keywords": [ "unit ball", "bergman space", "full toeplitz algebra", "non-trivial ideals", "compact operators" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0705.0970L" } } }