arXiv:quant-ph/0606168AbstractReferencesReviewsResources
Duality for monogamy of entanglement
Somshubhro Bandyopadhyay, Gilad Gour, Barry C. Sanders
Published 2006-06-20Version 1
We establish duality for monogamy of entanglement: whereas monogamy of entanglement inequalities provide an upper bound for bipartite sharability of entanglement in a multipartite system, we prove that the same quantity provides a \emph{lower} bound for distribution of bipartite entanglement in a multipartite system. Our theorem for monogamy of entanglement is used to establish relations between bipartite entanglement that separate one qubit from the rest vs separating two qubits from the rest.
Comments: 12 pages
Journal: Journal of Mathematical Physics 48: 012108 (13 pp.), 31 January 2007,
DOI: 10.1063/1.2435088
Categories: quant-ph
Keywords: bipartite entanglement, multipartite system, upper bound, bipartite sharability, entanglement inequalities
Tags: journal article
Related articles: Most relevant | Search more
Phase transitions of bipartite entanglement
arXiv:2311.17464 [quant-ph] (Published 2023-11-29)
Distribution of a bipartite entanglement in a mixed spin-(1/2,1) Heisenberg tetramer
arXiv:quant-ph/0011063 (Published 2000-11-15)
On the units of bipartite entanglement: Is sixteen ounces of entanglement always equal to one pound?