arXiv Analytics

Sign in

arXiv:quant-ph/0603061AbstractReferencesReviewsResources

Decompositions of unitary evolutions and entanglement dynamics of bipartite quantum systems

Domenico D'Alessandro, Raffaele Romano

Published 2006-03-07Version 1

We describe a decomposition of the Lie group of unitary evolutions for a bipartite quantum system of arbitrary dimensions. The decomposition is based on a recursive procedure which systematically uses the Cartan classification of the symmetric spaces of the Lie group SO(n). The resulting factorization of unitary evolutions clearly displays the local and entangling character of each factor.

Comments: 11 pages, revtex4
Journal: J. Math. Phys. 47, 082109 (2006)
Categories: quant-ph
Related articles: Most relevant | Search more
arXiv:0812.1572 [quant-ph] (Published 2008-12-09, updated 2009-08-27)
Bounding the dimension of bipartite quantum systems
arXiv:1306.0349 [quant-ph] (Published 2013-06-03, updated 2013-09-02)
Decomposition of any quantum measurement into extremals
arXiv:quant-ph/0609076 (Published 2006-09-11)
Maximum observable correlation for a bipartite quantum system