arXiv:quant-ph/0501084AbstractReferencesReviewsResources
Quantum Detection with Unknown States
Published 2005-01-17, updated 2005-05-19Version 2
We address the problem of distinguishing among a finite collection of quantum states, when the states are not entirely known. For completely specified states, necessary and sufficient conditions on a quantum measurement minimizing the probability of a detection error have been derived. In this work, we assume that each of the states in our collection is a mixture of a known state and an unknown state. We investigate two criteria for optimality. The first is minimization of the worst-case probability of a detection error. For the second we assume a probability distribution on the unknown states, and minimize of the expected probability of a detection error. We find that under both criteria, the optimal detectors are equivalent to the optimal detectors of an ``effective ensemble''. In the worst-case, the effective ensemble is comprised of the known states with altered prior probabilities, and in the average case it is made up of altered states with the original prior probabilities.