arXiv:quant-ph/0406166AbstractReferencesReviewsResources
Contextuality for preparations, transformations, and unsharp measurements
Published 2004-06-23, updated 2005-03-18Version 3
An operational definition of contextuality is introduced which generalizes the standard notion in three ways: (1) it applies to arbitrary operational theories rather than just quantum theory, (2) it applies to arbitrary experimental procedures, rather than just sharp measurements, and (3) it applies to a broad class of ontological models of quantum theory, rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality.