arXiv Analytics

Sign in

arXiv:quant-ph/0310180AbstractReferencesReviewsResources

Strategies to measure a quantum state

Franz Embacher, Heide Narnhofer

Published 2003-10-30Version 1

We consider the problem of determining the mixed quantum state of a large but finite number of identically prepared quantum systems from data obtained in a sequence of ideal (von Neumann) measurements, each performed on an individual copy of the system. In contrast to previous approaches, we do not average over the possible unknown states but work out a ``typical'' probability distribution on the set of states, as implied by the experimental data. As a consequence, any measure of knowledge about the unknown state and thus any notion of ``best strategy'' (i.e. the choice of observables to be measured, and the number of times they are measured) depend on the unknown state. By learning from previously obtained data, the experimentalist re-adjusts the observable to be measured in the next step, eventually approaching an optimal strategy. We consider two measures of knowledge and exhibit all ``best'' strategies for the case of a two-dimensional Hilbert space. Finally, we discuss some features of the problem in higher dimensions and in the infinite dimensional case.

Related articles: Most relevant | Search more
arXiv:1404.2495 [quant-ph] (Published 2014-04-09, updated 2014-11-29)
Simple scheme for encoding and decoding a qubit in unknown state for various topological codes
arXiv:quant-ph/9904068 (Published 1999-04-17)
"Assisted cloning'' and "orthogonal-complementing" of an unknown state
arXiv:1104.1006 [quant-ph] (Published 2011-04-06)
Detecting the concurrence of an unknown state with a single observable