arXiv Analytics

Sign in

arXiv:quant-ph/0207119AbstractReferencesReviewsResources

Overhead and noise threshold of fault-tolerant quantum error correction

Andrew M. Steane

Published 2002-07-19, updated 2003-07-31Version 4

Fault tolerant quantum error correction (QEC) networks are studied by a combination of numerical and approximate analytical treatments. The probability of failure of the recovery operation is calculated for a variety of CSS codes, including large block codes and concatenated codes. Recent insights into the syndrome extraction process, which render the whole process more efficient and more noise-tolerant, are incorporated. The average number of recoveries which can be completed without failure is thus estimated as a function of various parameters. The main parameters are the gate (gamma) and memory (epsilon) failure rates, the physical scale-up of the computer size, and the time t_m required for measurements and classical processing. The achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well as other information. It is found that concatenated codes based on the [[23,1,7]] Golay code give higher thresholds than those based on the [[7,1,3]] Hamming code under most conditions. The threshold gate noise gamma_0 is a function of epsilon/gamma and t_m; example values are {epsilon/gamma, t_m, gamma_0} = {1, 1, 0.001}, {0.01, 1, 0.003}, {1, 100, 0.0001}, {0.01, 100, 0.002}, assuming zero cost for information transport. This represents an order of magnitude increase in tolerated memory noise, compared with previous calculations, which is made possible by recent insights into the fault-tolerant QEC process.

Comments: 21 pages, 12 figures, minor mistakes corrected and layout improved, ref added; v4: clarification of assumption re logic gates
Categories: quant-ph
Related articles: Most relevant | Search more
arXiv:2404.11663 [quant-ph] (Published 2024-04-17)
Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
arXiv:2105.04478 [quant-ph] (Published 2021-05-10)
A sampling-based quasi-probability simulation for fault-tolerant quantum error correction on the surface codes under coherent noise
arXiv:quant-ph/0506201 (Published 2005-06-24, updated 2006-02-10)
Internal Consistency of Fault-Tolerant Quantum Error Correction in Light of Rigorous Derivations of the Quantum Markovian Limit