arXiv Analytics

Sign in

arXiv:quant-ph/0003121AbstractReferencesReviewsResources

Classical phase space and statistical mechanics of identical particles

T. H. Hansson, S. B. Isakov, J. M. Leinaas, U. Lindstrom

Published 2000-03-27Version 1

Starting from the quantum theory of identical particles, we show how to define a classical mechanics that retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau model. In both cases the resulting {\em classical} statistical mechanics is shown to be a nontrivial classical limit of Haldane's exclusion statistics.

Related articles: Most relevant | Search more
arXiv:quant-ph/0205069 (Published 2002-05-13, updated 2003-02-10)
Quantum Entanglement of Identical Particles
arXiv:quant-ph/9512006 (Published 1995-12-06, updated 1996-01-02)
Statistical Mechanics of $qp$-Bosons in $D$ Dimensions
arXiv:2011.08839 [quant-ph] (Published 2020-11-17)
Dynamical symmetrization of the state of identical particles