arXiv:quant-ph/0003121AbstractReferencesReviewsResources
Classical phase space and statistical mechanics of identical particles
T. H. Hansson, S. B. Isakov, J. M. Leinaas, U. Lindstrom
Published 2000-03-27Version 1
Starting from the quantum theory of identical particles, we show how to define a classical mechanics that retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau model. In both cases the resulting {\em classical} statistical mechanics is shown to be a nontrivial classical limit of Haldane's exclusion statistics.
Comments: 40 pages, Latex
Keywords: classical phase space, identical particles, statistical mechanics, haldanes exclusion statistics, chern-simons ginzburg-landau model
Tags: journal article
Related articles: Most relevant | Search more
Quantum Entanglement of Identical Particles
Statistical Mechanics of $qp$-Bosons in $D$ Dimensions
arXiv:2011.08839 [quant-ph] (Published 2020-11-17)
Dynamical symmetrization of the state of identical particles