arXiv Analytics

Sign in

arXiv:math/9904096 [math.DG]AbstractReferencesReviewsResources

On Loops Representing Elements of the Fundamental Group of a Complete Manifold with Nonnegative Ricci Curvature

Christina Sormani

Published 1999-04-19Version 1

This paper concerns complete noncompact manifolds with nonnegative Ricci curvature. Roughly, we say that M has the loops to infinity property if given any noncontractible closed curve, C, and given any compact set, K, there exists a closed curve contained in M\K which is homotopic to C. The main theorems in this paper are the following. Theorem I: If M has positive Ricci curvature then it has the loops to infinity property. Theorem II: If M has nonnegative Ricci curvature then it either has the loops to infinity property or it is isometric to a flat normal bundle over a compact totally geodesic submanifold and its double cover is split. Theorem III: Let M be a complete riemannian manifold with the loops to infinity property along some ray starting at a point, p. Let D containing p be a precompact region with smooth boundary and S be any connected component of the boundary containing a point, q, on the ray. Then the map from the fundamental group of S based at q to the fundamental group of Cl(D) based at p induced by the inclusion map is onto.

Comments: 19 pages
Journal: Indiana Journal of Mathematics, 50 (2001) no. 4, 1867-1883
Categories: math.DG
Related articles: Most relevant | Search more
arXiv:2312.00182 [math.DG] (Published 2023-11-30)
Finite generation of fundamental groups for manifolds with nonnegative Ricci curvature and almost $k$-polar at infinity
arXiv:math/9909017 [math.DG] (Published 1999-09-02, updated 2000-11-18)
The codimension one homology of a complete manifold with nonnegative Ricci curvature
arXiv:1809.10220 [math.DG] (Published 2018-09-26)
Nonnegative Ricci curvature, almost stability at infinity, and structure of fundamental groups