arXiv:math/9811058 [math.GR]AbstractReferencesReviewsResources
A Lie Algebra Correspondence for a Family of Finite p-Groups
Published 1998-11-09Version 1
For a prime p and natural number n with p greater than or equal to n, we establish the existence of a non-functorial one-to-one correspondence between isomorphism classes of groups of order p^n whose derived subgroup has exponent dividing p, and isomorphism classes of nilpotent p^n-element Lie algebras L over the truncated polynomial ring F_p[T]/(T^n) in which T[L,L]=0.
Comments: 8 pages. In LaTeX2e using the packages amsmath, amssymb and enumerate. Submitted for publication in J. Group Theory
Subjects: 20D15
Related articles: Most relevant | Search more
On central automorphisms of finite p-groups
arXiv:1802.03344 [math.GR] (Published 2018-02-09)
Co-periodicity isomorphisms between forests of finite p-groups
arXiv:1701.08020 [math.GR] (Published 2017-01-27)
Modeling rooted in-trees by finite p-groups