arXiv Analytics

Sign in

arXiv:math/9808040 [math.CO]AbstractReferencesReviewsResources

Polynomial Sequences of Binomial Type and Path Integrals

Vladimir V. Kisil

Published 1998-08-09, updated 2001-10-22Version 2

Polynomial sequences $p_n(x)$ of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express $p_n(x)$ as a \emph{path integral} in the ``phase space'' $\Space{N}{} \times {[-\pi,\pi]}$. The Hamiltonian is $h(\phi)=\sum_{n=0}^\infty p_n'(0)/n! e^{in\phi}$ and it produces a Schr\"odinger type equation for $p_n(x)$. This establishes a bridge between enumerative combinatorics and quantum field theory. It also provides an algorithm for parallel quantum computations. Keywords: Feynman path integral, umbral calculus, polynomial sequence of binomial type, token, Schr\"odinger equation, propagator, wave function, cumulants, quantum computation.

Comments: 16 pages; LaTeX; no pictures; Complete revision on 19.10.2001
Journal: Ann. of Combinatorics, 6(2002), no. 1, pp. 45-56.
Subjects: 05A40, 05A15, 58D30, 81Q30, 81R30, 81S40
Related articles: Most relevant | Search more
arXiv:1803.06636 [math.CO] (Published 2018-03-18)
Complexity problems in enumerative combinatorics
arXiv:1501.06107 [math.CO] (Published 2015-01-25)
Root geometry of polynomial sequences I: Type $(0,1)$
arXiv:1206.6174 [math.CO] (Published 2012-06-27)
Polynomial sequences of binomial-type arising in graph theory