arXiv Analytics

Sign in

arXiv:math/9502221 [math.CO]AbstractReferencesReviewsResources

Sequences of symmetric functions of binomial type

Daniel E. Loeb

Published 1995-02-09Version 1

We take advantage of the combinatorial interpretations of many sequences of polynomials of binomial type to define a sequence of symmetric functions corresponding to each sequence of polynomials of binomial type. We derive many of the results of Umbral Calculus in this context including a Taylor's expansion and a binomial identity for symmetric functions. Surprisingly, the delta operators for all the sequences of binomial type correspond to the same operator on symmetric functions. On s'appuie ici sur les interpr\'etations combinatoires de nombreuses suites de polyn\^omes de type binomial pour d\'efinir une suite de fonctions sym\'etriques associ\'ee \`a chque suite de polyn\^omes de type binomial. On retrouve dans ce cadre, de nombreaux r\'esultats du calcul ombral, en particulier une version de la formule de Taylor et la formule d'identit\'e du bin\^ome pour les fonctions sym\'etriques. On s'aper\oit que les op\'erateurs differentiels de degr\'e un pour toutes les suite de polyn\^omes de type a binomial correspondent \`a un op\'erateur unique sur les fonction sym\'etriques.

Related articles: Most relevant | Search more
arXiv:math/0603520 [math.CO] (Published 2006-03-21, updated 2006-07-05)
Alternating permutations and symmetric functions
arXiv:1510.00657 [math.CO] (Published 2015-10-02)
Noncommutative Schur functions, switchboards, and positivity
arXiv:1604.07897 [math.CO] (Published 2016-04-27)
Some aspects of (r,k)-parking functions