arXiv Analytics

Sign in

arXiv:math/9410205 [math.FA]AbstractReferencesReviewsResources

Pelczynski's property (V) on spaces of vector valued functions

Narcisse Randrianantoanina

Published 1994-10-31Version 1

Let $E$ be a separable Banach space and $\Omega$ be a compact Hausdorff space. It is shown that the space $C(\Omega,E)$ has property (V) if and only if $E$ does. Similar result is also given for Bochner spaces $L^p(\mu,E)$ if $1<p<\infty$ and $\mu$ is a finite Borel measure on $\Omega$.

Related articles: Most relevant | Search more
arXiv:math/0206107 [math.FA] (Published 2002-06-11)
On sub B-convex Banach spaces
arXiv:math/9606209 [math.FA] (Published 1996-06-05)
Concerning the Bourgain $ell_1$ index of a Banach space
arXiv:1610.07842 [math.FA] (Published 2016-10-25)
Recovering a compact Hausdorff space $X$ from the compatibility ordering on $C(X)$