arXiv:math/9201263 [math.GT]AbstractReferencesReviewsResources
Pleating coordinates for the Teichmüller space of a punctured torus
Published 1992-01-01Version 1
We construct new coordinates for the Teichm\"uller space Teich of a punctured torus into $\bold{R} \times\bold{R}^+$. The coordinates depend on the representation of Teich as a space of marked Kleinian groups $G_\mu$ that depend holomorphically on a parameter $\mu$ varying in a simply connected domain in $\bold{C}$. They describe the geometry of the hyperbolic manifold $\bold{H}^3/G_\mu$; they reflect exactly the visual patterns one sees in the limit sets of the groups $G_\mu$; and they are directly computable from the generators of $G_\mu$.
Comments: 6 pages
Journal: Bull. Amer. Math. Soc. (N.S.) 26 (1992) 141-146
Related articles: Most relevant | Search more
arXiv:1801.01812 [math.GT] (Published 2018-01-05)
Horospheres in Teichmüller space and mapping class group
arXiv:1807.11127 [math.GT] (Published 2018-07-29)
Random Lattices, Punctured Tori and the Teichmüller distribution
arXiv:math/9409232 [math.GT] (Published 1994-09-30)
Quasi-projections in Teichmüller space