arXiv:math/0703426 [math.NT]AbstractReferencesReviewsResources
Kolyvagin systems of Stark units
Published 2007-03-14, updated 2008-03-04Version 2
In this paper we construct, using Stark elements of Rubin [Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33-62], Kolyvagin systems for certain modified Selmer structures (that are adjusted to have core rank one in the sense of [Mem. Amer. Math. Soc. 168 (2004), no. 799] and prove a Gras-type conjecture, relating these Kolyvagin systems to appropriate ideal class groups, refining the results of Rubin [J. Reine Angew. Math. 425 (1992), 141-154].
Comments: 27 pages, revised version, accepted for publication in J. Reine Angew. Math. (Crelle's)
Categories: math.NT
Keywords: kolyvagin systems, stark units, appropriate ideal class groups, gras-type conjecture, stark elements
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1703.10411 [math.NT] (Published 2017-03-30)
On the ratios of Barnes' multiple gamma functions to the $p$-adic analogues
arXiv:1606.05502 [math.NT] (Published 2016-06-17)
Stark units in positive characteristic
arXiv:1312.4053 [math.NT] (Published 2013-12-14)
Refined class number formulas for $\mathbb{G}_m$