arXiv Analytics

Sign in

arXiv:math/0703347 [math.GT]AbstractReferencesReviewsResources

Surgery formulae for finite type invariants of rational homology 3--spheres

Christine Lescop

Published 2007-03-12Version 1

We first present three graphic surgery formulae for the degree $n$ part $Z_n$ of the Kontsevich-Kuperberg-Thurston universal finite type invariant of rational homology spheres. Each of these three formulae determines an alternate sum of the form $$\sum_{I \subset N} (-1)^{\sharp I}Z_n(M_I)$$ where $N$ is the set of components of a framed algebraically split link $L$ in a rational homology sphere $M$, and $M_I$ denotes the manifold resulting from the Dehn surgeries on the components of $I$. The first formula treats the case when $L$ is a boundary link with $n$ components, while the second one is for $3n$--component algebraically split links. In the third formula, the link $L$ has $2n$ components and the Milnor triple linking numbers of its 3--component sublinks vanish. The presented formulae are then applied to the study of the variation of $Z_n$ under a $p/q$-surgery on a knot $K$. This variation is a degree $n$ polynomial in $q/p$ when the class of $q/p$ in $\QQ/\ZZ$ is fixed, and the coefficients of these polynomials are knot invariants, for which various topological properties or topological definitions are given.

Related articles: Most relevant | Search more
arXiv:1306.6707 [math.GT] (Published 2013-06-28)
Pretzel knots with L-space surgeries
arXiv:2210.14071 [math.GT] (Published 2022-10-25)
Instantons and rational homology spheres
arXiv:math/0006181 [math.GT] (Published 2000-06-23)
On the Reidemeister torsion of rational homology spheres