arXiv Analytics

Sign in

arXiv:math/0702173 [math.PR]AbstractReferencesReviewsResources

Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping

A. M. G. Cox, David Hobson, Jan Obłój

Published 2007-02-07, updated 2008-11-13Version 2

We develop a class of pathwise inequalities of the form $H(B_t)\ge M_t+F(L_t)$, where $B_t$ is Brownian motion, $L_t$ its local time at zero and $M_t$ a local martingale. The concrete nature of the representation makes the inequality useful for a variety of applications. In this work, we use the inequalities to derive constructions and optimality results of Vallois' Skorokhod embeddings. We discuss their financial interpretation in the context of robust pricing and hedging of options written on the local time. In the final part of the paper we use the inequalities to solve a class of optimal stopping problems of the form $\sup_{\tau}\mathbb{E}[F(L_{\tau})-\int _0^{\tau}\beta(B_s) ds]$. The solution is given via a minimal solution to a system of differential equations and thus resembles the maximality principle described by Peskir. Throughout, the emphasis is placed on the novelty and simplicity of the techniques.

Comments: Published in at http://dx.doi.org/10.1214/07-AAP507 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Applied Probability 2008, Vol. 18, No. 5, 1870-1896
Categories: math.PR, q-fin.PR
Subjects: 60G40, 60G44, 91B28
Related articles: Most relevant | Search more
arXiv:1201.5870 [math.PR] (Published 2012-01-27)
Enlargements of filtrations and applications
arXiv:1012.5687 [math.PR] (Published 2010-12-28)
Coupling and Applications
arXiv:1105.1372 [math.PR] (Published 2011-05-06)
An inequality for means with applications