arXiv Analytics

Sign in

arXiv:math/0611096 [math.NT]AbstractReferencesReviewsResources

Almost all elliptic curves are Serre curves

Nathan Jones

Published 2006-11-03Version 1

Using a multidimensional large sieve inequality, we obtain a bound for the mean square error in the Chebotarev theorem for division fields of elliptic curves that is as strong as what is implied by the Generalized Riemann Hypothesis. As an application we prove a theorem to the effect that, according to height, almost all elliptic curves are Serre curves, where a Serre curve is an elliptic curve whose torsion subgroup, roughly speaking, has as much Galois symmetry as possible.

Related articles: Most relevant | Search more
arXiv:1306.1410 [math.NT] (Published 2013-06-06)
Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve
arXiv:math/0406244 [math.NT] (Published 2004-06-11)
Mod p representations on elliptic curves
arXiv:math/0401289 [math.NT] (Published 2004-01-22)
Trace of Frobenius endomorphism of an elliptic curve with complex multiplication