arXiv Analytics

Sign in

arXiv:math/0611044 [math.AP]AbstractReferencesReviewsResources

Wellposedness and stability results for the Navier-Stokes equations in ${\mathbf R}^{3}$

Jean-Yves Chemin, Isabelle Gallagher

Published 2006-11-02, updated 2006-12-04Version 2

In a previous work, we presented a class of initial data to the three dimensional, periodic, incompressible Navier-Stokes equations, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large. The aim of this article is twofold. First, we adapt the construction to the case of the whole space: we prove that if a certain nonlinear function of the initial data is small enough, in a Koch-Tataru type space, then there is a global solution to the Navier-Stokes equations. We provide an example of initial data satisfying that nonlinear smallness condition, but whose norm is arbitrarily large in $ C^{-1}$. Then we prove a stability result on the nonlinear smallness assumption. More precisely we show that the new smallness assumption also holds for linear superpositions of translated and dilated iterates of the initial data, in the spirit of a construction by the authors and H. Bahouri, thus generating a large number of different examples.

Comments: 28 pages misprints corrected
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:math/0505434 [math.AP] (Published 2005-05-20, updated 2006-03-21)
Quasi-geostrophic equations with initial data in Banach spaces of local measures
arXiv:1210.3429 [math.AP] (Published 2012-10-12)
Global Well-posedness of the Parabolic-parabolic Keller-Segel Model in $L^{1}(R^2)\times{L}^{\infty}(R^2)$ and $H^1_b(R^2)\times{H}^1(R^2)$
arXiv:0809.3837 [math.AP] (Published 2008-09-23)
Generalized Solutions of a Nonlinear Parabolic Equation with Generalized Functions as Initial Data