arXiv Analytics

Sign in

arXiv:math/0610868 [math.GT]AbstractReferencesReviewsResources

The Classification of Dehn fillings on the outer torus of a 1-bridge braid exterior which produce solid tori

Ying-Qing Wu

Published 2006-10-27Version 1

Let $K= K(w,b,t)$ be a 1-bridge braid in a solid torus $V$, and let $\gamma$ be a $(p,q)$ curve on the torus $T = \partial V$ of the exterior $M_K$ of $K$. It will be shown that Dehn filling on $T$ along $\gamma$ produces a solid torus if and only if $p$ and $q$ satisfy one of four conditions determined by the parameters $(w,b,t)$ of the knot $K$. This solves the classification problem raised by Menasco and Zhang for such Dehn fillings.

Journal: Math. Ann. 330 (2004), 1--15
Categories: math.GT
Subjects: 57N10
Related articles: Most relevant | Search more
arXiv:1106.2934 [math.GT] (Published 2011-06-15)
Core curves of triangulated solid tori
arXiv:math/0211379 [math.GT] (Published 2002-11-25)
Characteristic subsurfaces and Dehn filling
arXiv:1608.08654 [math.GT] (Published 2016-08-30)
4-dimensional analogues of Dehn's lemma